The University of California, San Diego, has become the home of a major facility dedicated to studying all aspects of full-scale composite material aircraft structures, located in the new Structural and Materials Engineering building.
The Composite Aviation Safety Center will allow engineers to design and manufacture test specimens representing aircraft parts made from composite materials— for example, fuselage sections, landing gear and wings. These specimens can be outfitted with embedded sensors to detect damage and monitor their structural integrity while being tested under various types of loading, for example simulating the impact of everything from hailstones to baggage loaders. Finally, the data provided by the tests and sensors will be used to build models to predict damage and provide insight and methodologies that enable engineers to develop improved designs. This cradle-to-grave approach is unique to the Jacobs School of Engineering at UC San Diego.
“What makes us unique is that we will be researching the entire product development process from design, to computational analysis with improved low-cost fabrication and full-scale testing, and failure analysis after testing,” said John Kosmatka, a professor of aerospace and structural engineering at the Jacobs School and one of the lead researchers for the new facility. “We are able to embed sensors into the structural components during fabrication to improve our understanding of critical features and monitor the deterioration of structural performance over their operational life. We have the capability to go from micro-scale composite material development to full-scale aircraft components.”
This kind of research is becoming increasingly important as aircraft manufacturers move away from aluminum alloy outer skins and toward composite materials to build their primary structural components. One major concern is that composites can undergo damage that’s not visible to the naked eye from the outside of the aircraft. In the airline industry, the first line of defense to detect damage resulting from a severe event, such as an impact, is a visual inspection, which might not be able to detect damage to an aircraft’s composite skin and internal structure.
A single hit is unlikely to have significant consequences as aircraft are required to withstand exceptional levels of damage and still be able to execute extreme maneuvers that would happen only once in the lifetime of the plane. But researchers are trying to understand how repeated impacts, wide-spread impacts, and other kinds of severe events and loading affect aircraft over their lifespan. They are working on better understanding the underlying phenomena and seeking to establish better ways to detect, predict and avoid damage. This ultimately leads to improvements to make structures lighter and safer.
Click here to read the entire article:
Latest from Aerospace Manufacturing and Design
- Muratec USA announces strategic Mid-Atlantic partnership with Alta Enterprises
- Blue laser scanner for CMMs
- Archer reveals plans for Miami air taxi network
- Threading tool, gage lines expanded
- #55 Lunch + Learn Podcast with KINEXON
- Boeing to build 96 AH-64E Apache helicopters for Poland
- SIDEKICK automation solution
- Ohio awards $10.2M for new defense, aerospace, tech R&D statewide