Digital quadrature encoders have become a de facto standard for precision automation systems used in laser materials processing, additive manufacturing, and test/inspection.
Physik Instrumente's (PI USA) Cliff Jolliffe, head of automation market segment; Matt Price, technical manager, precision motion/laser processing present Generating Precise A/B Quadrature Signals from Motion Platforms Without Inherent Digital Feedback.
Digital quadrature encoders have become a de facto standard for precision automation systems used in laser materials processing, additive manufacturing, and test/inspection. In these tools, stage-level integrated encoder technologies provide feedback to external devices for process synchronization from inkjet print boards to line scan cameras. These encoder requirements applied to the core automation systems, have traditionally imposed technical constraints limiting flexibility, performance, and throughput in these tools. In this talk, the presenters discuss how encoder technologies effect process performance while presenting on recent work that will allow the next generation of tools to use absolute encoders, analog encoders or no encoders while still enabling tool process synchronization with devices that require digital quadrature encoder signals.
Latest from Aerospace Manufacturing and Design
- Boeing awarded U.S. Air Force contract for 15 KC-46A tankers
- Nikon’s new Dual.Material CT software for faster X-ray scanning
- 5 Things You Need to Know about machining aerospace connectors on a CNC multi-spindle
- GKN Aerospace, Lilium work on electrical wiring interconnection system
- Okuma's MCR-S double column machining center
- Okuma GENOS M460V-5AX Leo the Lion
- Run faster or last longer?
- Helical milling system